Journal of Mathematical Sciences: Advances and Applications
Volume 3, Number 1, 2009, Pages 41-58

GRADED RINGS IN WHICH EVERY PROPER
GRADED IDEAL IS ALMOST GR-PRIME

HANI KHASHAN, AMEER JABER and MALIK BATAINEH

Mathematics Department
Al-Albayt University
Mafraq 25113

Jordan

Mathematics Department
Hashemite University
Zarqa 13115

Jordan

e-mail: ameerj@hu.edu.jo

Mathematics Department

Jordan University of Science and Technology
Irbid 22110

Jordan

Abstract

In this paper, we study further properties of almost and n-almost gr-prime
ideals in a graded ring R. In particular, we investigate some conditions under
which a graded ideal is almost gr-prime. Finally, we give a characterization for

graded rings in which every proper graded ideal is almost gr-prime.

1. Introduction

Throughout our work on almost graded prime ideals which has yet to

appear, we develop the theory of almost graded prime ideals and n-almost
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graded prime ideals, and, then we extend some basic results about almost
and n-almost prime ideals to the graded case. In this paper we study
further properties of almost and n-almost graded prime ideals in a
graded ring R.

Let R be a commutative ring and let G be an abelian group. Then R is
called a G-graded ring if there exists a family {R, : g € G} of additive
subgroups of R such that R = ® R, and R,R; c R, for each gand h

geG

in G. Let h(R) = U R,. Then any element of R belongs to h(R) is called
geG

homogeneous.. Moreover, if x € R, for some g € G, then we say that x

is of degree g. An ideal I of a graded ring R is called graded if

I= @ (IN Rg) = ® 1I,. Equivalently, Iis graded in R if and only if /
geG geG

has a homogeneous set of generators. If R and R' are two G-graded
rings, then a mapping n: R - R’ with n(lp)=1p is called a gr-
homomorphism if it is a ring homomorphism such that n(Rg) c R, for

all g e G. Let R = (-BG R, be a G-graded ring and let I be a graded ideal
g€

of R. Then the Quotient ring R/I is also a G-graded ring. Indeed,
R/I1= ®(R/I),, where (R/I), ={x+1:x e Rg}. Also, if R; and
geG 8 g

Ry are Gi-graded and Gsy- graded rings respictively, then R; x Ry is
Gy x Go-graded with
(Ry x Ry) (g 5y = {(ag, bp): ag € Rig and by, € Rop},

for (g, h) € G; x Gy. Moreover, a G-graded ring R is called gr-
decomposable if R = R; x Ry for some non trivial G-graded rings R; and
Ry. Otherwise, R is called gr-indecomposable..

Let R be a graded ring and let S < A(R) be a multiplicatively closed

subset of R. Then the ring of fractions S™'R is a graded ring which is
called the gr-ring of fractions. Indeed, S™'R = @G(S_lR)g, where
ge

(S'R), = {g .7 e h(R), s e S and g = (degs) " (degr)}.
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Let n: R > S'R be a ring gr-homomorphism defined by n(r) = {
Then for any graded ideal I of R, the graded ideal of SR generated by

n(I) is denoted by S™'I. Similar to non graded case one can prove that
S_II={7»eS_1R:7»=£forreIandseS},

and that S™'7 # S™'R ifand only if SN I = .

If 7 is a graded ideal in S_lR, then J (| R will denotes the graded

ideal n71(7) of R. Moreover, one can prove that

STINR={x e h(R): xs e I for some s € S}.

A graded ideal P of a graded ring R is called gr-prime if whenever x, y €
h(R) with xy € P, then x € P or y € P. If a graded ideal M of R is
maximal in the lattice of graded ideals of R, then M is called gr-maximal
in R and the set of all gr-maximal ideals of R is denoted by J%(R). By

using Zorn’s Lemma, one can see that if R is a non trivial graded ring,
then it contains at least one gr-maximal ideal. A graded ring with unique
gr-maximal ideal is called a gr-local ring. Following [1], a graded ideal P

of a graded ring R is called weakly gr-prime if whenever x, y € h(R)
with xy € P - {0}, then x € P or y € P. As a generalization of weakly
gr-prime ideals, almost gr-prime ideals and n-almost gr-prime ideals
have been defined in [3] where n € N. Indeed, a graded ideal P of a
graded ring R is called n-almost gr-prime if whenever xy € P — P", then
x € P or y e P, where x, y € h(R). In particular, the almost gr-prime

ideals are just the 2-almost gr-prime ideals.

Let P be any gr-prime ideal of a graded ring R and consider the
multiplicatively closed subset S = A(R) - P. We denote the graded ring

of fraction ST'R of R by RI% and we call it the gr-localization of R. This

ring is gr-local with the unique gr-maximal S~'P which will be denoted
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by PRigg. Moreover, for graded ideals I and J of R, if IRI% = JRI‘% for

every gr-prime (gr-maximal) ideal P of R, then I = J.

2. Properties of Almost GR-Prime Ideals
In the following Proposition, we can determine two properties of
almost gr-prime ideals.

Proposition 2.1. Let P be an almost gr-prime ideal of a graded ring
R. Then

1. If I is a graded ideal of R with I < P, then P/ I is an almost gr-
prime ideal of R/ I.
2. If Sch(R) is a multiplicatively closed subset of R with

PNS = ¢, then S7P is an almost gr-prime ideal of S7IR.

Proof.1. Let r; + I and ry + I be two elements in A(R/ I) such that
(n+I)(rp+I)eP/I-(P]I) Then n, s € h(R) with
nro+I1eP/I- (P2+1)/I So, nry € P and nyry ¢ P2 + I and, then

nry, ¢ P2, Since P is almost gr-prime, then neP or pe P and
therefore, n + I € P/I or ry + I € P/ 1. Thus, P/ I is an almost gr-

prime ideal.
n n -1 G 1T -1 -1p2
2. Let —, = € h(ST'R) with —. = € S P — (S P?). Then there
St S2 S1 S2

exist b € P and s € S such that nn _ b and, then there exists u € S
$189 S

such that usnry = us;s9b € P. Moreover, wrry ¢ P2 for any w € S and

so usnry € P - P2, Since P is almost gr-prime, then either usry, € P or

ry € P. Consequently, either ;—1 e S7'P or ;—2 e S7'P which implies
1 2

that S7'P is almost gr-prime.
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Remark 2.2. By the previous proposition, if P is an almost gr-prime
ideal of R, then S™'P is an almost gr-prime ideal of S~'R. However,
S'PNR # P in general. For example, let R = Zg ® V5Zg = Ry + Ry,
then R is Zy-graded ring with 1 € R; and let P = {0}. Then P is an
almost gr-prime ideal of R and so S™'P = S71{0} is almost gr-prime in
S7IR, where S =1{1, 2, 4, V5, 24/5, 4J5} is a multiplicatively closed
subset of R. However,

S_lPﬂR={xeR:xs:ﬁforsomeseS}z{6,§,§x/g}¢P.

Recall that if A and B are two sets, then (4 x B) - (A x B)? = (A - A%)x
B.

Proposition 2.3. Let R; and Ry be two graded rings. A graded ideal
A of Ry x Ry is almost gr-prime if and only if A has one of the following

forms:
1. A = P, x Ry, where P, is an almost gr-prime ideal in R;.
2. A = Ry x Py, where Py is an almost gr-prime ideal in Ry.

3. A =1xd, whereIand J are both idempotent graded ideals in Ry

and Ry respectively.

Proof.

= ): Suppose that A is almost gr-prime in R; x Ry. Let A = P, x
R, for some graded ideal P, of R;. Let a, b € h(R;) such that ab € P,
~ P2. Then

(a,1)(b,1) € (P, - P2)x Ry = (P, x Ry) - (P, x Ry )"

Since P; x Ry is almost gr-prime, then (a,1) € P, x Ry or (b, 1) € P; x

Ry. Therefore, either a € P, or b e P, and P, is almost gr-prime.
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Similarly, if A = R; x P, for some graded ideal P, of R,, then P is also
almost gr-prime. Finally, suppose that A = I xJ for some proper graded

ideals T and J of R, and R, respectively. Let a e (I N h(R))- I?. Since
A-A%2 =(IxJd)-(IxJP =((I-I*)xJ)U(I x(J -J?)),

then (a, 1)(1, 0) = (a, 0) € A — A% and so either (a,1) € A or (1, 0) € A.
Thus, either 1 € J or 1 € I and this contradicts that I and JJ are proper.
Therefore, I = 1 2 is idempotent in R;. Similarly, / is idempotent in Rs.

< ): Suppose that A = P; x Ry, where P, is an almost gr-prime
ideal in R;. Let (n,m)(t, ts) e (P xRy)— (P, x Ry)?. Then (nt;,
rots) € (P, — P2)x Ry and so rit; € P, — P2. Since P, is almost gr-prime
in Ry and nt; € h(R), then either r € P, or ¢; € P, and therefore,
either (r;, ry) € P, x Ry or (¢, ty) € P; x Ry. Similarly, if A = R; x P,
where P, is almost gr-prime in Ry, then A is almost gr-prime in
R; x Ry. Now, suppose that A = I x.J, where I and J are idempotent
graded ideals in R; and R, respectively. Then A? is idempotent and so

A is almost gr-prime in Ry x Ry.

Recall that an ideal I of a graded ring R is called gr-principal if
I = (a) for some a e h(R). Recall also that If I and J are two graded

ideals in a graded ring R, then the ideal (J : [)={x e R: xI c J} is a

graded ideal, see [6]. In the following lemma, we can justify a condition
under which a gr-principal ideal is gr-prime in a graded ring.

Lemma 2.4. Let R be a graded ring and let 0 # a € h(R) be non unit
in R. If (a) is almost gr-prime with (0 : (a))  {(a), then (a) is a gr-prime
ideal of R.

Proof. Suppose (a) is not gr-prime. Then there exist x, y € h(R)
such that xy e (a) but x ¢ (a) and y ¢ (a). If xy ¢ <a2>, then x e (a)

or y € (a) since (a) is almost gr-prime, which is a contradiction. Thus,
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xy € <a2> and so x(y + a) € (a). If x(y + a) ¢ <a2>, then we have x € (a)

or y+a € (a). Again in both cases we have a contradiction. Therefore,

x(y+a)e <a2> and since xy € <a2>, we get xa € <a2>. Hence, xa = ra®

for some r € R and, then a(x — ar) = 0. Since (0 : (a)) < (a), we get x —
ar € (a) and so x € (a), a contradiction. It follows that (a) is a gr-prime

ideal of R.

Recall that if I is a graded ideal of a graded ring R, then an element
a € h(R) is called a zero divisor on R/ I if there is b € h(R) - I such

that ab € I. Recall also that a graded ideal I of a graded ring R is called

gr-invertible if there is a graded ideal J of R (denoted by I _1) with
1J = R.

Proposition 2.5. Let P be an n-almost gr-prime ideal in a graded

ring R.

1. If a € KR) is a zero divisor on R /P, then either a € P or
aP c P™.

2. If J is a graded ideal consists of zero divisorson R/ P and J < P,
then JP" ' = P

3. If P is gr-invertible, then P is gr-prime.

Proof. 1. Since a is a zero divisor on R /P, then there is

b € h(R)- P such that ab € P. Suppose that a ¢ P. Since P is an n-
almost gr-prime ideal, then ab € P". Also, for any x € P N h(R), we
have x +b ¢ P and a(x + b) € P. Therefore, a(x + b) € P", since P is n-

almost gr-prime and so ax € P" as ab € P". It follows that aP < P".

k
Indeed, if z € P, then z = in, where x; e (R)NP fori=1,2,..., k
=1
k
and, then az = ) ax; € P".
i=1
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2. Let a eJ and be P! It is enough to prove that ab € P".

Since a is a zero divisor on R/ P, then by (1) either a € P or aP < P".

If a € P, then we are done. If aP c P", then ab € aP" ' c aP c P".

3. Suppose that there exist x, y € h(R) such that xy € P but x ¢ P
and y ¢ P. Then y is a zero divisor on R/ P and so yP < P". Since Pis
gr-invertible, then P! exists and yPP™! < P"P~! and so yR c P"\.

Therefore, y e prt ¢ P, a contradiction. So, Pis a gr-prime ideal in R.

If R is a graded ring and a € h(R), then similar to the non graded

case, one can apply Zorn’s lemma to prove that a is a unit in R if and only

if @ ¢ M for any gr—-maximal ideal M of R.

Proposition 2.6. Let R be a gr-local ring with unique gr-maximal

ideal M and let I be a graded ideal of R with M? cIc M. Then I is

almost gr-prime if and only if M? =12

Proof. (=): Suppose that I 1is almost gr-prime. Let
x, y € MNA(R). We prove that xy e I?. Suppose that xy ¢ I?. Since
Xy € M? < I and I is almost gr-prime, then either x € I or y € I. Let
x € I, then y ¢ I since otherwise xy e 12 Now, y2 e M? c I and so
y is a zero divisor on R/ I. Hence, by Proposition 2.5, xy € yI < I

Therefore, (M NA(R)? < I> and so clearly M? < I2. The other

inclusion is obvious.

(<) : Suppose that M2 = I?. Let x, y € h(R) with xy e I - I%. If
x ¢ M, then x is a unit in R and so y € I. Similarly, if y ¢ M, then

xel If x, ye M, then xy e M? = I? which is not true. So, in each

case [ is an almost gr-prime ideal of R.



GRADED RINGS IN WHICH EVERY PROPER ... 49

A graded ideal I of a graded ring R is called gr-multiplication in R if
whenever JJ is a graded ideal of R with J < I, then there is a graded

ideal K of R such that J = KI. Clearly, any gr-principal ideal of a graded
ring is gr-multiplication. The following lemma can be considered as the

graded version of Nakayama’s lemma.
Lemma 2.7. If I is a gr-multiplication ideal of a graded ring R and A
c J4(R), then I = IA implies that I = 0.

Proof. See [3].

Lemma 2.8. Let R be a gr-local ring with unique gr-maximal ideal M.

If every proper gr-principal ideal in R is almost gr-prime, then M? =o.

Proof. It is enough to prove that h(M?) = 0. Let x, y € k(M) - {0}.
Consider the gr-principal ideal (xy) of R. If (xy) # 0, then by assumption
(xy) is almost gr-prime with xy e (xy). Thus, either x e (xy), ¥ € (xy) or

Xy € (xy)Z. If x e (xy), then (x) = (x)(y) and so (x) = 0 by Lemma 2.7.
Similarly, if y e (xy), we get (y) = 0. Finally, if xy (xy)z, then (xy) =
(xy)z and so again by Lemma 2.7, (xy) = 0. Therefore, in any case, we
get a contradiction to the assumption that x, y, xy ¢ {0}. Hence, xy = 0
and h(M?) = 0.

Lemma 2.9. Let R be a graded ring in which every proper gr-
principal ideal is almost gr-prime. Then for all a € h(R), we have (a2>
= (a3 ). Moreover, (a2) = (e) for some idempotent element e € h(R).

Proof. Let M be a gr-maximal ideal of R. By Proposition 2.1, every
proper gr-principal ideal of Rfl is almost gr-prime and so

M?R%, = O0R§, by Lemma 28. Let ach(R). If aeM, then

a\2 2pg a2 _ g a . ..
<T> e M“R$, and so <T> = ORg;. If a ¢ M, thenT is a unit in
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R§,. In both cases, (%)2 = (%)3 and so (a® )RS, = (a® )RS, for every
gr-maximal ideal M of R. Hence, (a?)=(a®). For the other part,
(a2> = (a3> implies that (a2> = (a4> and so a® = ba? for some b € R.
Thus, e =ba? =b%a* = (ba? )2 =¢2 is idempotent. Moreover,
ea® = ba* = a? and then <a2) c (e) (a2 ). It follows that <a2) = (e).

Definition 2.10. A graded ring R is called gr-regular if for every

a € h(R), there exists x € R satisfying a = axa.

Recall that a graded ring R is called gr-field if every nonzero
homogeneous element in R is a unit. Eqivalentely, R is gr-field if and
only if R has no proper graded ideals if and only if 0 is a gr-maximal ideal
in R.

Similar to the non graded case, we can see the following

characterization of gr-regular rings.
Lemma 2.11. The following are equivalent for a graded ring R.

1. R is a gr-regular ring.
2. R]gw is a gr-field for each gr-maximal ideal M of R.

3. Every graded ideal of R is idempotent.

Proof. (1. = 2.): Let M be a gr-maximal ideal of R. We prove that

MRS, = OR§,. Let a € M N h(R). Then there exists x € R such that

2

2 . . .
a = axa and so e = ax = axax = (ax)” = e“ is an idempotent element in

M. Therefore, e(e—1)=0 and e-1¢ M. Hence, % = % and then

ca_Q g _ RS
=1 11 Thus, (M NA(R)RS, =O0R§, and then
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(2. = 3.): Let I be a graded ideal in R. Let M be a gr-maximal ideal
in R. Then IR§, = OR§, or IR§, = R$, since R{, is a field. Therefore,

I2Rj‘(4 = IR§, for each gr-maximal ideal M of R and then I = I.

(8. = 1.): Let a € A(R). Then (a) = (a?) and so a = a®r for some

r € R. Hence, a = ara and R is gr-regular.
Remark 2.12. If R = @Z R, is a Z-graded ring and R is a field,
ne

then by [5], R is concentrated in R;. This means that R = R; and
R, =0 forall 0 # n € Z. Moreover, If M is gr-maximal ideal in R, then

one can see that
M= ®R,®R 1 ®My®R ®Ry ®--

for some maximal ideal M, of R, see [5]. Therefore, in this case R is a
gr-regular if and only if nglr/l is a field for each gr-maximal ideal M of R.
Recall that if R is gr-indecomposable, then 0 and 1 are the only

idempotent elements in R. Indeed, if e is idempotent in R, then R =

(e) x (1 —e). In the next main Theorem, we give a characterization of

graded rings in which every proper graded ideal is almost gr-prime. First,
we need the following definition and lemma.

Definition 2.13. Let R be a graded ring. The gr-nilradical of R
(denoted by nil%(R)) is defined as

nil®(R) = {x € h(R) : x* = 0 for some n € N}.
Similar to the non graded case one can prove that
nil®(R) = n{P : P is gr-prime in R}.

Lemma 2.14. Let R be a graded ring. If M is the set of homogeneous
nonunit element in R which is contained in nil®(R), then M is a graded

ideal of R. Moreover, R is gr-local with M as the unique gr-maximal ideal.
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Proof. Since M c nil®(R) and 1 is a unit, then clearly M is a proper
ideal of R. Moreover, M is graded since M < h(R). Since 0 € M, then 0

is nonunit of R and so 0 # 1. Thus R is not trivial and so it has at least
one gr-maximal ideal. Let I be one such. Then I contains only nonunit

elements and so, I ¢ M < R. Hence, I = M since I is gr-maximal.

Therefore, M is the unique gr-maximal ideal of R and R is gr-local.
Theorem 2.15. Let R be a graded ring. The following are equivalent.
1. Every proper graded ideal of R is almost gr-prime.

2. Every proper gr-principal ideal of R is almost gr-prime.

3. R is either gr-regular or gr-local with M? =0, where M is the gr-

maximal ideal of R.

Proof. (1. = 2.) : Trivial.

(2. = 3.): We first assume that R is gr-indecomposable. Then by
Lemma 2.9, (a2> = (e) for some idempotent e in R and so a? =0 or

a? =1. Ifaisa unit, then a? =1. Thus, a? =0 for any nonunit ¢ in R
and so the set of homogeneous nonunits of R is contained in nil®(R) and
so it 1s a graded ideal of R and R is gr-local by Lemma 2.14. Therefore,

M? =0 by Lemma 2.8. Next we assume that R is gr-decomposable, say,

R = R; x Ry. We prove that R is gr-regular. Clearly, if R; and R, are
gr-regular, then R is so. Suppose that R, is not gr-regular. Then by
Lemma 2.11, it has a non idempotent graded ideal I. Consider the graded
ideal O0xI of R. Let rel-1I% Then (1,7)(0,1)=(0,r)e0x1—
(0 x I)? and so either (1, 7) € 0x I or (0,1) e 0x I since 0x I is almost
gr-prime in R. But, neither (1, r) nor (0, 1) belong to 0 x I and we get a
contradiction. Therefore, Ry is gr-regular. Similarly, we can see that R;

is gr-regular and hence R is gr-regular.



GRADED RINGS IN WHICH EVERY PROPER ... 53

(3. = 1.) : Suppose that R is gr-local with M2 = 0. Let I be a proper
graded ideal of R. Let a, b € h(R) such that ab e I —{0}. Since M? =0
and ab # 0, then either a ¢ M or b ¢ M. If a ¢ M, then a is a unit

and so b = a '(ab) e I. Similarly, if b ¢ M, then a e I. Therefore, I is

an almost gr-prime ideal of R. On the other hand, if R is gr-regular, then
any proper graded ideal in R is idempotent by Lemma 2.11 and hence it
is almost gr-prime.

3. Further Properties of Almost GR-Prime Ideals

In this section we introduce some definitions, and then we determine

four properties of almost gr-prime ideals.

Definition 3.1. Let R = @G R, be a G-graded ring, where G is an
ge

abelian group. Then R is said to be Noetherian graded ring if the graded

ideals in R satisfy the ascending chain condition.

Definition 3.2. A commutative G-graded ring R is said to be

valuation graded ring if for any a, b € h(R) either a divides b or b
divides a, that is either b = ca for some ¢ € A(R) or a = db for some

d < h(R).

Definition 3.3. A commutative G-graded ring R is called a graded

domain if 1 € R,, where e is the identity element in G, and whenever

a € h(R) with a # 0, then ab = 0 if and only if b = 0.

Lemma 3.4. Let R be a graded domain and let ¢ # 0 € h(R) such
that c¢ is nonunit. If < ¢ > is not graded prime ideal, then there exists

a, b e h(R)- h(< ¢ >) with ab e< ¢ >, but ab ¢< c" > .

Proof. Let a, b € h(R) with ab e< ¢ > and a g<c¢ > and b g< ¢ > .
If abg<c" >, we are done. So assume that ab e<c” >; then
ab+c")e<e> and a, b+ e h<es). If alb+c™ ) e<c >,

then ac”' e<c¢” >, and this implies that ac™' = dc® for some
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dehR), so ac"'-de"=0=(a-de)" ' =0=a=dce<c>,
contradiction.

Corollary 3.5. If <c¢ > is an n-almost graded prime ideal in a

graded domain R, then < ¢ > is a graded prime ideal.

Lemma 3.6. (Generalized Nakayama) If J is a graded ideal in a
commutative graded ring R with identity, then the following conditions

are equivalent
(1) J is contained in every maximal graded ideal in R.
(2) 1 - j, is a unit for every j, € J,.

3) If A is a finitely generated graded G-module over R such that
JA = A, then A = 0.

(4) If B is a graded submodule of a finitely generated graded G-
module A over R such that A = JA + B, then A = B.

Proof. (1) = (2) If j, € J, such that 1 - j, is not a unit, then the
graded ideal <1 - j, > is not R itself and by Zorn’s Lemma is contained
in a maximal graded ideal M # R. But 1-j, €« M and j, € M which

implies that 1 € M, which is a contradiction. Therefore 1 — j, is a unit.

(2) = (3) Since A is finitely generated, there must be a minimal
generating set X = {aj, ag, ..., a,} < h(A). If A #0, then a; # 0 by
minimality. Since JA = A,

Q1 = Jo01 + JoQg + ...+ JuQy,

where j, € J, and j; € h(J) for all i =2, ..., n, whence la; = a; so

that (1-j,)a; =0 if n =1 and
(1-j,)a; = joag + ...+ jpa, if n>1.

Since 1-j, is a unit in R, thus if n =1, then a¢; =0 which is a

contradiction. If n > 1, then «; is a linear combination of as, ..., a,.
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Consequently, {as, ..., a,} generates A, which contradicts the choice of

X. Therefore A = 0.

(3) = (4) Consider the quotient graded module A / B, then one can
easily check that J(A/B)= A/ B whence A/ B =0 and A = B by (3).

(4) = (1) Let M be any maximal graded ideal. The graded ideal
J+M =JR+ M contains M. But JR+ M # R (otherwise R = M by
(4)). Consequently, JR+M =M by maximality. Therefore
J=JRc M.

Corollary 3.7. Let R be a Noetherian commutative graded ring with

identity, and let I be a graded ideal in R such that [ is contained in every

maximal graded ideal in R, then n I" = {o0}.

n=1

Proof. Let A = ﬂ I", then A finitely generated graded module over

n=1

R, since R 1s Noetherian and IA = A, then by Lemma 3.6 A = 0.

In a Noetherian graded domain R we have the following result.

Theorem 3.8. Let R be a Noetherian graded domain, and let I be a
graded ideal in R such that I is contained in every maximal graded ideal
in R. Then I is a graded prime ideal if and only if I is an n-almost graded

prime ideal for all n > 2.

Proof. Let I be an n-almost graded prime ideal for all n > 2. Let
x,y € h(I). If xy ¢ I" for some nin Z*, then xy € h(I)- h(I"). Hence
x € (I) or y e h(I), since I is an n-almost graded prime ideal. If

xy € I" for all n>1, then xy e J = ﬂ I". Since R is a Noetherian

n=1
graded domain, then by Corollary 3.7, J = {0}. Thus xy = 0 implies x =

Oeclory=0c¢€l, since Ris a graded domain.
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Conversely, if I is a graded prime ideal, then one can easily check
that I is an n-almost graded prime ideal for all n > 2.

Definition 3.9. A commutative graded ring R is said to be valuation
graded ring, if for any a, b € h(R) either a divides b or b divides a.

In a valuation graded domain V, we have the following result about
almost graded prime ideals.

Theorem 3.10. Let V be a valuation graded domain. Then a graded
ideal I of V is almost graded prime if and only if it is a graded prime
ideal.

Proof. Let x,y € h(V) with xy € I. Assume that x, y ¢ h(I). Since
x ¢ I, x divides a for all a e h(I), which implies that I c< x >,

similarly I c< y >. Thus < xy >> I2. If I? #< xy >, then xy € h(I) -

h(I?). Since Iis almost, x € I or y e I, a contradiction.

So assume < xy >= I%. Then I being a factor of a graded principle

ideal is graded principle. Thus by Corollary 3.5, I is a graded prime ideal.
The converse is trivial for all graded rings R.

Now we have the following main result for the local graded ring

(R, M).

Theorem 3.11. Let (R, M) be a local graded ring. Every proper
graded ideal of R is a product of almost graded prime ideals if and only if

either M is principle or

@) for each x € K(M)—-h(M?2), < x% >= M?; and

(i) M3 = {o}.
Proof. (=) Suppose M is not principle. Let I be a proper graded ideal

of R which is a product of almost graded prime ideals with M 21
< M. Note that I is actually almost graded prime since I can not be a
product of two proper graded ideals. Then by Proposition 2.6, I 2 - M2
Now for x e h(M)-h(M?), take I =<=x >+M?, so M? c 1 c M.
Then
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M? =(<x>+M2)P? c <x?>+<x>M?+M*

c < x> +M?

c < x2 > +MM? gM2.

Thus M? =< x2 > . Now we show that M? = {0}. Consider (0 : x). We

have M2 c< x > . If(O:x)gM2, then (0 : x) c< x > where < x > is
almost graded prime ideal. By Lemma 2.4, < x > is graded prime ideal
which implies that < x >= M, a contradiction. So assume that (0 : x)
« M?. Let y e h((0: x))— h(M?). Since (0 : x) = M, then M2 =< y? >

c<y>c (0:x). Thus x> € M2 < (0: x); so x> =0 and hence xM?>

=x <x?>={0}. Now let <z>c M? Then <z>c M <x? >, but

M < x? >c xM? = {0}. Hence M3 = {0}.

(<) If M is principle, say M =< m >, for some m € h(R), then the

only proper graded ideals of R are < m >, < m? >, e, < mF >, .-+ each of

which is a product of graded prime ideals.

Now assume that M is not principle and suppose (i) and (i) hold.
Then by (1), M 2 is principle and hence no proper graded ideal between
{0} and M?, because if I = M?, then I = MM? = M3 = {0}, since
M? is a gr-multiplication graded ideal in R. So suppose I < M is a
graded proper ideal with I ¢ M?2. Let x e h(I)- h(M?), then I o< x >

o< x2 >= M2,

If 1= M2, then I is a product of graded prime ideals. So assume that

2

I> Mz, we have < x > I, so M? =< x >C 12, but since I ¢ M, we

have I2 c M2, hence I? = M?. So by Proposition 2.6, I is almost

graded prime ideal.
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